Queues
Definition:
A queue is a fundamental data structure that follows the First In, First Out (FIFO) principle. This means that the first element added to the queue is the first one to be removed.
Example:
The first person who joins the queue is the first one to be served.
Characteristics of Queues:
- FIFO Principle:
- The First In, First Out principle dictates the order in which elements are processed in a queue.
- Operations:
- Enqueue (or Push): Adds an element to the back (or rear) of the queue.
- Dequeue (or Pop): Removes the element from the front (or front) of the queue.
- Front (or Peek): Retrieves the element at the front of the queue without removing it.
- Implementation:
- Queues can be implemented using arrays or linked lists. Arrays are efficient when the size of the queue is fixed, while linked lists are more flexible in handling dynamic sizes.
Applications of Queues:
- Job Scheduling:
- Queues are used in job scheduling algorithms, ensuring that tasks are processed in the order they arrive.
- Print Queue:
- Print jobs in a printer queue are processed in the order they are received.
- Breadth-First Search (BFS) in Graphs:
- Queues are essential in BFS traversal of graphs, exploring nodes level by level.
- Task Management in Operating Systems:
- Queues are used to manage tasks in operating systems, such as process scheduling.
- Buffer Management:
- Queues are employed in managing buffers, ensuring data is processed in the order it is received.
Time Complexity:
- Enqueue, Dequeue, and Front:
- In most cases, the time complexity for these operations is O(1), meaning they have constant time complexity.
- Space Complexity:
- The space complexity of a queue is O(n), where n is the number of elements in the queue.
Write about Each operation clearly with an example and code
Difference Between Stack and Queue:
Feature | Stack | Queue |
Order Principle | Last In, First Out (LIFO) | First In, First Out (FIFO) |
Insertion Operation | Push (adds to the top) | Enqueue (adds to the back) |
Removal Operation | Pop (removes from the top) | Dequeue (removes from the front) |
Access Point | Only the top element is accessible | Front and rear elements are accessible |
Real-life Analogy | Stack of plates | A line of people waiting in a queue |
Applications | Function call management, expression evaluation, undo mechanisms | Job scheduling, print queues, breadth-first search in graphs |
Time Complexity | Push, Pop, and Peek: O(1) | Enqueue, Dequeue, and Front: O(1) |
Space Complexity | O(n), where n is the number of elements | O(n), where n is the number of elements |
Difference Between Enqueue and Dequeue:
Feature | Enqueue | Dequeue |
Definition | Adds an element to the back | Removes an element from the front |
Characteristic | Follows the FIFO principle | Follows the FIFO principle |
Purpose | Inserts an element at the end | Removes the next element to be processed |
Example | Adding a print job to the print queue | Removing the front print job from the print queue |
Implementation | Adds an element to the end of the data structure | Removes an element from the front of the data structure |